Leipzig, B. G. Teubner, 1909.
8vo. Bound in contemporary half calf with gilt lettering to spine. In "Mathematische Annalen", 67 band. 1909. Bookplates to pasted down front free end-paper and library stamp to verso of title page. Top half of spine is detached. Bookblock, however, still firmly attached. Fine and clean. Pp. 281-300. [Entire volume: IV, 575 pp.].
First printing of a groundbreaking work in Number Theory. Edward Waring (1734-98) stated, in his "Meditationes Algebraicae" (1770), the theorem known now as "Waring's Theorem", that every integer is either a cube or the sum of at most nine cubes; also every integer is either a fourth power of the sum of at most 19 fourth powers. He conjectured also that every positive integer can be expressed as the sum of at most r kth powers, the r depending on k. These theoremes were not proven by him, but by David Hilbert in the paper offered.
Hilbert proves that for every integer n, there exists an integer m such that every integer is the sum of m nth powers. This expands upon the hypotheis of Edward Waring that each positive integer is a sum of 9 cubes (n=3, m=9) and of 19 fourth powers (n= 4, m=19).
This issue also contains F. Hausdorff's "Zur Hilbertschen Lösung des Waringschen Problems", pp. 301-305.
(Se Kline p. 609).
Order-nr.: 47248