EULER, LEONHARD.

Sur une Contradiction apparente dans la Doctrine des Lignes courbes (On an apparent contradiction in the theory of curves) + (continuation:) Demonstration sur le Nombre des Points, ou deux Lignes des Ordres quelques peuvent se couper (A proof concerning the number on points in which two lines of arbitrary orders may intersect).

(Berlin, Haude et Spener, 1750). 4to. No wrappers, as issued in "Mémoires de L'Academie Royale des Sciences et Belles-Lettres", tome IV, pp. (219)-233 and (234)-248.


First edition of two early works by Euler on "Higher Plane Curves". He discusses the question of whether nine points determine a unique cubic curve, considers the same question for 14 points and quadratic curves, 20 points and so on. He solves the problem using a system of equations. In the following paper he concludes that there are at most mn points of intersection, with some of the points possibly imaginary. - Eneström, Euler Bibliography E 147 a. E 148.

Order-nr.: 36110


DKK 1.200,00